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Background: High-Dimensional Multiclass Clas-
sification

The general challenge modern statistics faces with is high-dimensionality
of the data, where the number of features d is large and might be even
larger than the sample size n (”large d small n ” setups)
Recall: Previous work in 2019[1] only designed Slope for binary classifi-
cation by Logistic Regression.
Feature selection for multiclass classification has not yet been rigorously
well-studied before this paper published and the goal of this paper is to fill
the gap.
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Background: High-Dimensional Multiclass Clas-
sification

L-class classification, Features X ∈ X ⊆ Rd ; Outcome class label
Y ∈ {1, . . . , L}. We can model it as

Y | (X = x) ∼ Mult (p1(x), . . . , pL(x))

where
pl(x) = P (Y = l | X = x), l = 1, . . . , L

.
Classifier: η : X → {1, . . . , L}.
Misclassification Error: R(η) = P (Y ̸= η(x)).
Optimal Classifier: η∗(x) = arg max

1⩽l⩽L
pl(x)withR (η∗) = 1−EX max

1⩽l⩽L
pl(x).
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Strategies in Multiclass Classification

A first strategy for multiclass classification is to reduce it to a series of
binary classifications.

OvA: one-vs-all, for L-class classification we need to train L models,
where each class is compared against all others.
OvO: one-vs-one, for L-class classification we need to train

(
L
2

)
= L(L−1)

2

models, where all pairs of classes are compared to each other.

Remark For feature selection, all models in OvA and OvO may select
different features. And that’s why we don’t use such strategy.

Sometimes OvA and OvO will have better performance in classification,
but at the same time computational cost will increase rapidly since we have
much more models to train.
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Extend Binary Classification to Multiclass

Multiclass Classification ERM

A common approach to design a multiclass classifier η̂ is based on em-
pirical risk minimization (ERM):

R̂n(η) =
1

n

n∑
i=1

I {Yi ̸= η (xi)} (1)

A crucial drawback of ERM is in minimization of 0-1 loss that makes
it computationally infeasible. It is common to replace 0-1 loss by related
convex surrogate.

For logistic regression, related convex surrogate will be L(y, f (x)) =

log(1 + exp(−y · f (x))).
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Multinomial Logistic Regression

Multinomial logistic regression model:

ln
pl(x)

pL(x)
= βT

l x, l = 1, . . . , L− 1 (2)

and βl ∈ Rd are the vectors of the (unknown) regression coefficients.
Hence,

pl(x) =
exp
(
βT
l x
)∑L

k=1 exp
(
βT
kx
), l = 1, . . . , L,βL = 0 (3)

The Bayes classifier is then a linear classifier η∗(x) = arg max
1≤l≤L

pl(x) =

arg max
1≤l≤L

βT
l x.

6



Penalized Maximum Likelihood Estimation

Log-likelihood function

Let B ∈ Rd×L be the matrix of the regression coefficients in (2) with
the columns β1, . . . ,βL (recall that βL = 0) and let fB(x, y) be the corre-
sponding joint distribution of (X, Y ), i.e. dfB(x, y) =

∏L
l=1 pl(x)

ξldPX(x).
The conditional log-likelihood function is

ℓ(B) =

n∑
i=1

{
XT

i Bξi − ln

L∑
l=1

exp
(
βT
l Xi

)}
(4)

By maximizing ℓ(B) we can get B. The MLE β̂ ’s though not available
in the closed form, can be nevertheless obtained numerically by the fast
iteratively reweighted least squares algorithm.
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Sparsity of B

For binary classification, the sparsity can be naturally measured by ℓ0 :
∥β∥0.
For multiclass case we may think of several ways to measure the sparsity
of B:

The number of non-zero rows of B (row-sparse).
Element-wise sparsity.
Reduced-rank + Row-sparse. [3]

This paper chooses row-sparse corresponds to the assumption that part of
the features do not have any impact on classification at all.
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Misclassification Excess Risk Bounds

Assumption

Assumption (A) Assume that there exists 0 < δ < 1/2 such that δ <

pl(x) < 1 − δ or, equivalently,
∣∣βT

l x
∣∣ < C0 with C0 = ln 1−δ

δ for all x ∈ X
and all l = 1, . . . , L.

Remark This assumption prevents the conditional variancesVar (ξl | X = x) =

pl(x) (1− pl(x)) to be arbitrarily close to zero.
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Penalized Maximum Likelihood Model Selection Criterion

M : The set of all 2d possible models M ⊆ {1, · · · , d}.
BM : {B ∈ Rd×L : BL = 0 and Bj· = 0 iff j /∈ M}.
Under the model M , the MLE B̂M of B is then

B̂M = arg max
B̃∈BM

n∑
i=1

{
XT

i B̃ξi − ln

L∑
l=1

exp
(
β̃
T

l X i

)}
(5)

where β̃l = B̃·l, l = 1, . . . L are the columns of B̃.
Selection Criterion:

M̂ = arg min
M∈M

{
−ℓ(B̂) + Pen(|M |)

}
(6)
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From Infeasible to Feasible

In order to make the original problem computational feasible (as 0-1 loss
is impossible to optimize), the paper provide the penalty below:

Pen(|M |) = c1|M |(L− 1) + c2|M | ln
(

de

|M |

)
(7)

1. First part is an AIC penalty, this part measures the number of parameters.
2. Second part measures the combinatorial complexity.

The penalty term transforms the discrete combinatorial problem of ”fea-
ture subset selection” into a continuous optimization problem of ”minimizing
empirical risk + penalty term,” thereby avoiding exponential enumeration
searches.
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Upper Bound and Minimax Lower Bound of the Excess Risk

Nonzero rows of matrix B : rB.
The set of all d0-sparse linear L-class classifiers:

CL (d0) =
{
η(x) = arg max

1⩽l⩽L
βT
l x : B ∈ Rd×L, B·L = 0 and rB ≤ d0

}
The complexity penalty:

Pen(|M |) = c1|M |(L− 1) + c2|M | ln
(

de

|M |

)
(8)

The absolute constants c1, c2 > 0 are given in the proof of Theorem 3.

Remark Recall the penalty in [1] below:

Pen(|M |) = c|M | ln de

|M |
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The Upper Bound of the Excess Risk

Theorem 1: Upper Bound of the Excess Risk
Under Assumption (A) and penalty in (8),

sup
η∗∈CL(d0)

E
(
η̂
M̂
, η∗
)

⩽ C1(δ)

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n

for some C1(δ) depending on δ, for all 1 ≤ d0 ≤ min(d, n).

Remark This theorem build the upper bound of the excess risk for multino-
mial logistic regression for the first time.
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Minimax Lower Bound of the Excess Risk

Theorem 2: Minimax Lower Bound of the Excess Risk
Consider a d0-sparse agnostic multinomial logistic regression model (1)-
(2), where 2 ⩽ d0 ln

(
de
d0

)
⩽ n and d0(L − 1) ⩽ n. Then for some

C2 > 0,

inf
η̃

sup
η∗∈CL(d0),PX

E (η̃, η∗) ⩾ C2

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n

Remark Combining theorem 1, we now have

Excess Risk ∼

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n
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Different Cases of L

Let two parts in Pen(|M |) = c1|M |(L − 1) + c2|M | ln
(

de

|M |

)
equal to

each other. One may obtain L = 2 + ln(d/d0).

1. Small Number of Classes: L ⩽ 2+ ln
(

d
d0

)
. Multiclass classification for

such a small number of classes is essentially not harder than binary.
2. Large Number of Classes: 2+ln

(
d
d0

)
< L ≤ n

d0
. Pen(|M |) ∼ c|M |(L−

1) is an AIC type penalty.
3. Impossible: L > n

d0
. At this time coefficients matrix B will be larger

than sample size.

Without sparsity assumption, i.e. in the case d0 = d(⩽ n), the misclassi-
fication excess risk is of the order

√
d(L−1)

n for all 1 ≤ L− 1 ≤ n
d .
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Improved Bounds Under Low-Noise Condition

Assumption

Assumption (B) Consider the multinomial logistic regression model (3)
and assume that there exist C > 0, α ⩾ 0 and h∗ > 0 such that for all
0 < h ⩽ h∗,

P
(
p(1)(X)− p(2)(X) ⩽ h

)
⩽ Chα (9)

Where p(i)(X) stands for the i-th largest probability.

Remark Assumption (B) implies that with high probability (depending on
the parameterα) the most likely class is sufficiently distinguished from others.
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Improved Bounds for Misclassification Excess Risks

Theorem 3: Improved Bounds for Misclassification Excess Risks

Consider a d0-sparse multinomial logistic regression model and let M̂
be a model selected with the complexity penalty Pen(|M |). Then, under
Assumptions (A) and (B), there exists C(δ) such that

sup
η∗∈CL(d0)

E
(
η̂
M̂
, η∗
)
⩽ C(δ)

d0(L− 1) + d0 ln
(
de
d0

)
n


α+1
α+2

(10)

for all 1 ⩽ d0 ⩽ min(d, n) and all α ≥ 0.

Remark Theorem 1 is a particular case of Theorem 3 with α = 0. Theorem
3 tells us the minimax bound can be improved in low-noise condition.
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Multinomial Logistic Group Lasso and Slope

Multinomial Logistic Group Lasso

To capture row-sparsity we consider a multinomial logistic group Lasso
classifier defined as follows. For a given tuning parameter λ > 0,

B̂gL = argmin
B̃

{
1

n

n∑
i=1

(
ln

(
L∑
l=1

exp
(
β̃
T

l X i

))
−XT

i B̃ξi

)
+ λ

d∑
j=1

|B̃|j


Where |B̃|j = |B̃j·|2 is the ℓ2-norm of the j-th row of B̃.
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Multinomial Logistic Group Slope

Multinomial logistic group Slope is a more general variation of multino-
mial logistic group Lasso. Namely,

B̂gS = argmin
B̃

{
1

n

n∑
i=1

(
ln

(
L∑
l=1

exp
(
β̃
T

l X i

))
−XT

i B̃ξi

)
+

d∑
j=1

λj|B̃|(j)


(11)

where the rows’ ℓ2-norms |B̃|(1) ⩾ . . . ⩾ |B̃|(d) are the descendingly
ordered and λ1 ⩾ . . . ⩾ λd > 0 are the tuning parameters.
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Constraints for Convex Relaxation

Assumption (C) For the components Xj of the random feature vector X ∈
Rd, the following conditions hold:

1. EX2
j = 1 (features are scaled);

2. There exist constants κ1, κ2, w > 1 and γ ⩾ 1/2 such that (E|Xj|p)1/p ⩽
κ1p

γ for all 2 ⩽ p ⩽ κ2 ln(wd) (moments grow polynomially up to order
ln d).

This assumption ensures that for n ⩾ C1(ln d)
max(2γ−1,1),

E max
1⩽j⩽d

1

n

n∑
i=1

X2
ij ⩽ C2

for some constants C1 = C1 (κ1, κ2, w, γ) and C2 = C2 (κ1, κ2, w)
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Excess Risk Bounds for Group Slope Classifiers

Theorem 4
Consider a d0-sparse multinomial logistic regression. Apply the multino-
mial logistic group Slope classifier (11) with λj ’s satisfying

max
1⩽j⩽d

√
L + ln(d/j)

λj
⩽ C0

√
n (15)

with the constant C0 derived in the proof. Assume Assumptions (A)-(C)
and let n ⩾ C1 ln d. Then,

sup
η∗∈CL(d0)

E (η̂gS, η
∗) ⩽ C(δ)

 d0∑
j=1

λj√
j


2(α+1)
α+2

(12)

for some constant C(δ) depending on δ.
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Two Specific Choices of Penalty Coefficients λj

Equal λj

This choice is equal to case of multinomial logistic group Lasso. Take

λ = C0

√
L + ln d

n
(16)

to satisfy Theorem 4.

Corollary 1 With λj above and under Assumptions (A)-(C) and n ⩾

C1 ln d,

sup
η∗∈CL(d0)

E (η̂gL, η
∗) ⩽ C(δ)

(
d0(L− 1) + d0 ln(de)

n

)α+1
α+2

for all 1 ⩽ d0 ⩽ min(d, n) and all α ⩾ 0.
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Variable λj

Consider

λj = C0

√
L + ln(d/j)

n
(13)

Corollary 2 With λj in (13) and under Assumptions (A)-(C) and n ⩾ C1 ln d,

sup
η∗∈CL(d0)

E (η̂gS, η
∗) ⩽ C(δ)

d0(L− 1) + d0 ln
(
de
d0

)
n


α+1
α+2

for all 1 ⩽ d0 ⩽ min(d, n) and all α ⩾ 0.

It is adaptively rate-optimal for both small and large number of classes,
and, unlike the penalized likelihood classifier η̂

M̂
, is computationally feasi-

ble.
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Contribution of this Paper

The paper presents a unified, minimax-optimal theory for high-dimensional
multiclass classification with sparse multinomial logistic regression:

1. Penalized Maximum Likelihood Estimation: The paper proposes the
penalty to control the complexity in multinomial classification:

Pen(|M |) = c1|M |(L− 1) + c2|M | ln
(

de

|M |

)
(14)

2. Minimax lower bounds: The paper derived non-asymptotic upper bounds
and minimax lower bounds for misclassification excess risk:

sup
η∗∈CL(d0)

E(η̂
M̂
, η∗) ⩽ C1(δ)

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n

(15)

And it will be proven that the upper bound is tight.
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3. Phase transition phenomenon: The paper discovered the number of
classesLwill affect the dominant term of the risk. And it will be discussed
in two circumstances: L ⩽ 2 + ln(d/d0) and L > 2 + ln(d/d0) .

4. Risk improvment under low-noise conditions: A multiclass extension
of the low-noise (Tsybakov) [2] condition is introduced. And under this
condition, the risk bound is improved to

E(η̂
M̂
, η∗) ⩽ C(δ)

d0(L− 1) + d0 ln
(
de
d0

)
n

 (16)

5. Computationally feasible methods: Multinomial logistic group Lasso
and Slope classifiers are designed to replace combinatorial search with
convex optimization.
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Limitations

1. The study primarily focuses on a single form of sparsity (row-wise sparsity
in the parameter matrix), neglecting other sparsity patterns.

2. The theoretical results heavily depend on restrictive assumptions such
as Assumptions (A)-(C). For instance, Assumption (A) requires class
probabilities to be bounded away from 0 and 1.
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